
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  11 ( 1 9 7 6 )  1 0 7 7 - - 1 0 8 2  

On the spheroidization of rod-shaped 
particles of finite length 
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The governing equation for the capillarity-induced shape changes of a surface of revolu- 
tion by surface diffusion, 

~n B ~  (v~K) 
~t - y ~s ~s 

where ~n/~t  is the normal veloci ty of  the  surface,  y is measured normal to  the  axis of 
revolut ion,  s is arc length, K is the  total  surface curvature  and B is a kinetic parameter  
which is cons tan t  for  a given t empera tu re  and material ,  is presented.  A numerical  solut ion 
to this equat ion  is used to analyse finite cyl inders wi th  hemispherical ends. A critical 
length-to-diameter  ratio (L/D) of  7.2 is predicted,  below which on ly  one spheroidal 
particle results and above which two  or more are fo rmed,  and is shown to have experi- 
mental  suppor t  in several systems.  

1, Introduction 
The instability of a cylindrical shape under the 
influence of capillarity or surface tension effects 
is well-known. First-order perturbation analyses 
were given by Rayleigh [1] for inviscid fluids 
both where the fluid flow is within the cylinder 
(as with a liquid jet) and where the flow is outside 
the cylinder (as with a gas jet within a liquid). 
These treatments assumed cylinders of infinite 
length, thus ignoring end-effects. Analogous 
treatments were performed by Nichols and Mullins 
[2] for the kinetic processes of surface (inter- 
facial) diffusion and volume diffusion (both inter- 
nal and external to the cylinder). The principal 
results of these analyses are reducible to two 
characteristic wavelengths, namely ),o =2rrR0 
(where Re = initial unperturbed cylindrical radius) 
and X~ (a function of the mass-transport mech- 
anism). For any longitudinal perturbation of wave- 
length less than ?to, the cylinder is stable, i.e. such 
perturbations decay with time. For X >Xo, the 
cylinder is unstable, i.e. such perturbations in- 
crease in amplitude with time. For a wavelength 
XM, the rate at which the perturbation develops 
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reaches a maximum value. Thus for an actual 
case in which long cylinders break up due to the 
chance development of fluctuations in cross- 
section, one would expect the spacing between 
the resulting spheroidal particles to coincide 
closely with X M. Nichols and Mullins [2] derived 
the values X M = 27rx/2Ro(= 8.89Ro), 9.02Ro 
and 12.96Ro for surface (interfacial) diffusion, 
internal volume diffusion and external volume 
diffusion, respectively, as the dominant transport 
mechanism. These authors also treated the case 
of an arbitrary ratio of simultaneous surface and 
external volume diffusivities. 

In addition to predicting that long rod-shaped 
particles (such as precipitates) would spheroidize 
in the manner described above, Nichols and 
Mullins further predicted that plate-like particles 
(or precipitates), being stable with respect to 
analogous rumpling, would first develop essen- 
tially cylindrical (or toroidal) shapes by a bulging 
process along their edges and these cylindrical 
shapes would, in turn, spheroidize by the process 
discussed above. 

In another publication [3], Nichols and Mullins 

1077 



treated the spheroidization of semi-infinite rods 
by the mechanism of surface (interfacial) diffusion 
and by numerical techniques analysed the actual 
shape changes during the entire spheroidization 
process. Since the bulging of the end of the rod 
produces a prominent perturbation and allows 
simultaneous shortening of the rod, one expects 
intuitively that the sphere-spacing from this 
"ovulation" process should be somewhat less 
than that for the infinite cylinder. Indeed, the 
spacing predicted for the semi-infinite rod for 
surface diffusion is about 8.5Ro compared with 
the value of about 8.9Ro for the infinite rod. 
Although not treated by Nichols and Mullins, 
the case of a semi-infinite rod ovulating by internal 
volume diffusion would be expected to produce 
a very similar spacing since the infinite rod per- 
turbation analysis predicts almost the same spacing 
as for surface diffusion. By the same token, exter- 
nal volume diffusion should produce significantly 
greater spacings by a factor of about 13/9, or 

1.5. These various predictions offer numerous 
possibilities for experimental confirmation and 
implementation to determine appropriate diffu- 
sivities. We shall discuss a number of these applica- 
tions later. 

2. Analysis 
The significant length of a semi-infinite rod 
consumed per ovulation event obviously implies 
what is intuitively apparent :a critical length of 
rod must exist above which ovulation occurs and 
below which it does not. This presents another 
parameter which is capable of experimental 
observation but until now no theoretical predic- 
tions have been available. Our purpose here is to 
supply such predictions for the specific case of 
surface diffusion. 

The surface flux, Js, of atoms along an arbitrary 
surface is [4] 

= --Ds-~U Vs/~ (1) 
a s -  kT 

la-- I.to = 792K (2) 

where P0 is the chemical potential of a flat surface 
7 is the surface tension (assumed isotropic here), 
g2 is the molecular volume and K is the total 
curvature of the surface at the point of interest, 
we have for the special case of a surface of revolu- 
tion the equation derived previously [3] 

On _ B ~ (y~K) 
Bt y Os ~-s (3) 

where ~n/3t is the normal velocity of the surface 
at the point of interest, y is measured normal 
to the axis of revolution, s is arc length along the 
generating curve for the surface and B--DsT~22 
u/kT is a constant for a given system at fixed 
temperature. 

A numerical scheme for solving Equation 3 has 
been presented previously [3] and details will not 
be repeated here (see also [5]). The solution 
employs dimensionless variables and the parameter 
employed here to study the effect of finite rod 
lengths is the aspect ratio, LID or the total tip-to- 
tip rod length divided by its diameter. That is to 
say, the starting shapes are perfect finite rods of 
radius Ro (diameter D) with hemispherical tips 
also of radius Ro. LID values from 4.75 to 35 
were studied. It should be clear that the results 
obtained apply exactly only to the special shape 
assumed. Applications to real situations must be 
made with this fact in mind. 

The shape evolution for a rod with an initial 
LID = 4.75 is displayed in Fig. 1. The two ends 
bulge and recede (toward each other). Simul- 
taneously, a slight depression develops at the 
centre of the rod but it soon reverses itself, an 
eUipsoidal shape ensues and the final equilibrium 
spherical shape is approached at long times. These 
shape changes can be understood in terms of the 

NUMBERS ON CURVES GIVE 
DIMENSIONLESS TIME UNITS 

where D s is the surface self-diffusion coefficient 
(assumed isotropic here), v is the number of 
diffusing species per unit surface area, /1 is the 
chemical potential of the diffusing species, k and 
T have their usual meanings and the gradient in 
chemical potential, Vs/l, is along the surface of 
interest. Combining Equation 1 with the Gibbs- 
Thomson relation [4] 
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Figure 1 Shape changes for rod of initial aspect ratio of 
4.75. 
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characteristic wavelengths discussed above. For an 
L/D of 4.75, there is sufficient length available 
(L = 9.5 Ro) for a wavelength greater than 7to = 
6.28Ro) to develop and so both bulging near the 
ends and necking in the middle occur. But ,  as 
this occurs, the two ends recede (and the two 
bulges with them), leaving less available length. 
After r = 5 3 3  dimensionless time units (r  = 
(18/nro)4Bt, where ro =initial rod radius and 
t = real time), the length between the maxima 
in the bulges is only about 5Ro < 3.o. Thus, at 
about this point the end effects due to the finite 
rod length make it impossible for a 3. > 3.o to 
exist. Thus, the rod is now stable, the neck ex- 
pands and eventually a single sphere obtains. 
This stabilization process is enhanced even more 
by the fact that the average radius (which is what 
corresponds to R0 for the infinite rod) is itself 
increasing somewhat. 
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Figure 2 Shape changes for rod of initial aspect ratio of 
7.00. 

The case of LID = 7.00 is displayed in Fig. 2 
where only half of the symmetrical body is shown. 
With this longer length (L = 14Ro) an unstable 
wavelength is maintained longer than before but 
at r = 1500, the length between bulges is only 
about 5.6Ro (<Xo)  and so the neck which in 
this case has become quite pronounced begins to 
expand and again a single sphere is the end result. 

Critical behaviour is reached at LID = 7.19 as 
seen in Fig. 3. The longer length allows the waist 
to develop until ovulation results, producing two 
egg-shaped particles at r = 1461. At this critical 
point the length between bulges is about 6.3Ro, i.e. 

938] /1461 
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Figure 3 Shape changes for rod of initial aspect ratio of 
7.19 (critical aspect ratio). 

approximately equal to the critical wavelength 
for instability of  an infinite sphere. In fact, these 
numbers are surprisingly close (Xo = 6.28Ro) 
in that the rod prot'fle at this point differs greatly 
from a sinusoidal shape. 

Since for the critical LID the length between 
bulges at the point of ovulation is just barely 
sufficient for instability, a somewhat longer rod 
should result in a longer length at this point and 
hence yield a faster rate of  break-up. That this is 
in fact the case is shown in Fig. 4, for the case of  
LID = 7A 1. The ovulation time has now decreased 
from r =  1461 (for L/D=7.19) to ~-= 1415 
(for LID = 7.41). The length between bulges at 
the time of ovulation for LID = 7.41 is about 
6.8. Since this is still significantly less than X M 
(=8 . 89Ro  for surface diffusion) one might 
expect that a still longer rod should break up 
faster by developing a longer perturbation. How- 
ever, such is not the case. 

Fig. 5 shows the case of LID = 7.64 for which a 
new stabilizing effect begins to be important, i.e. 
the initial development of a third bulge in the 
middle. The initial length of L = 15.28Ro, being 
well over 2Xo = 12.56Ro, enables the extra bulge 
to grow until recession of the ends shorten the 
rod sufficiently to reverse the trend. The net 
effect of  the formation and subsequent elimina- 
tion of  the central bulge is to require a longer time 
to reach ovulation into two particles at r = 1435. 

Longer lengths allow even greater development 
of the central bulge and thus require still longer 
times for ovulation. Then, a second critical aspect 
ratio is reached for the formation of three particles 

__?__2( Figure 4 Shape changes for rod of 
initial aspect ratio of 7.41. 

Figure 5 Shape changes for rod of initial 
aspect ratio of 7.64. 
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Figure 6 Shape changes for rod of initial 
aspect ratio of 10.6. 

rather than two. Fig. 6 shows the case of an LID 
of 10.6 where separation into three particles is 
almost possible but eventually the central hump 
disappears. Ovulation to form two particles then 
ensues but the time required is now 7-= 3474, 
more than a factor of two longer than the mini- 
mum ovulation time of r = 1415 for an LID of 
7.41. At an LID of about 10.8, three particles are 
in fact produced with the central one being some- 
what smaller. As LID increases still further, the 
ovulation time at first falls as the production of 
three particles becomes the "natural" process and 
then increases again as first a fourth bulge forms 
and then the two central bulges transform into 
one central bulge. Similar behaviour is expected 
around critical aspect ratios for forming 4, 5, 6, 
. . . ,  etc. particles but the process was not 
followed in detail beyond the formation of three 
particles. The longest aspect ratio studied was 
LID = 35 and for this case, of course, multiple 
particles result with the initial ovulation time 

being r = 2471. This differs by only ~7% from 
the ovulation time obtained previously for a semi- 
infmite rod which, expressed in these same dimen- 
sionless units, would be z = 2688. The variation 
of ovulation time versus aspect ratio is displayed 
in Fig. 7. The amplitude of the oscillations in 
ovulation time of course decreases as the number 
of particles increases. An error analysis of the 
numerical scheme employed was presented pre- 
viously [3, 5].  Based on that analysis, the errors 
here should be about 1%. Thus, the ovulation 
time for the semi-infinite rod is better estimated 
by the L/D = 35 case presented here 0" = 2471) 
than the value obtained previously with somewhat 
less accuracy. 

The critical aspect ratio obtained here (7.2) 
below which a finite rod is stable, although pre- 
cisely correct only for surface diffusion, is ex- 
pected to be quite accurate for the case of  internal 
volume diffusion since kM for internal volume 
diffusion is only slightly larger than kM for surface 
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diffusion. In fact, a very similar critical value 
should obtain for external volume diffusion as 
well since ~o is independent of mechanism and as 
discussed above, the distance between bulges for 
the critical aspect ratio at the point of ovulation 
is essentially equal to ~o- However, our conclusion 
for external volume diffusion is clearly not as 
well founded as for internal volume diffusion. 

3. Applications to experiment 
Moon and Koo [6] studied the development of 
pores in doped tungsten for use in electric light- 
bulb filaments. The dopant forms; during process- 
ing, gas-fiUed cavities. Wire drawing stretches these 
out into long cylinders. During annealing of these 
long cylindirical pores, ovulation was observed and 
it was found that the spacing between the resulting 
spheroidal cavities was in agreement with the )t M 
value for surface diffusion predicted by Nichols 
and Mullins [2]. These authors concluded that sur- 
face diffusion was the rate-controlling process and 
calculated surface diffusivities from the ovulation 
times which were found to be in satisfactory agree- 
ment with values obtained independently by 
other investigators using other techniques. They 
further reported that short cylinders (LID < 10) 
did not ovulate but instead formed only one spher- 
oidal cavity. Thus, this study confirms the exist- 
ence of a critical L/D-ratio but unfortunately its 
value is only crudely estimated. 

Lemmlein [7] studied the annealing of satu- 
rated salt solution-filled, cylindrical cavities in 
Na2NO3 crystals at room temperature. The trans- 
parency of the crystals and the relatively large 
sizes of the cavities (typically > 61ma in diameter) 
permitted rather detailed, in situ observations on 
their shape evolutions. Many instances of ovula- 
tion were observed. The author attributed the 
rates to the diffusion of salt through the solution 
inside the cavities, i.e. internal volume diffusion, 
and for the size of his cavities this seems plausible 
[2]. Lemmlein observed a critical LID ratio, below 
which ovulation did not occur, which from his 
photographs we estimate to be about 7, in excel- 
lent agreement with our predicted value as dis- 
cussed above. He also observed the behaviour of 
cylinders not quite sufficiently long to break up. 
He reports "cases are observed when the nearly 
elongated inclusion, it would seem, by now 
ready to be divided into two inclusions, begins to 
change its shape in a reverse direction, the channel 
gradually expands and contracts and the two elon- 

gated cells connected with it merge into one 
isometric one". Clearly, he was observing the 
nearly-critical behaviour we have described above 
and which is displayed in Fig. 2. 

McLean and co-workers [8,9] studied the 
behaviour of liquid-lead inclusions in aluminium at 
450 to 620~ McLean employed the rigorous 
Herring scaling laws [10] to show conclusively 
that the spheroidization of his ~ 10/aln diameter 
cylinders was controlled by volume diffusion. He 
presumed, quite plausibly, that A1 diffusion within 
the liquid lead inclusions was rate-controlling. In 
the absence of a rigorous solution for the detailed 
volume-diffusion-controlled shape evolutions, he 
nevertheless was able to predict quantitative rates 
by ratioing to our solution for surface diffusion in 
a manner consistent with the Herring scaling laws. 
McLean also observed that the shorter rods did not 
ovulate and reported an approximate critical 
ratio of LID ~ 8. Considering that this was given 
only as a very approximate estimate, we consider 
it quite consistent with our theoretical prediction 
of ~7.2. 

Stapley and Beevers [11, 12] studied the Ost- 
wald ripening of sapphire whiskers embedded in a 
nickel matrix. For their very small diameters 
(~0.1  to 1.4/nn) we would definately expect 
surface (interfacial) diffusion to control the 
observed shape changes (assuming the rates are in 
fact diffusion-controlled), although they did not 
prove this point. They observed both ovulation 
from the ends and what they call "waisting" 
developing from the formation of longitudinal 
perturbations. They also reported that shorter 
whiskers did not ovulate but formed only one 
spheroidal particle. They give a very rough esti- 
mate of the critical ratio as LID ~ 6. We again 
consider this very reasonable confirmation of 
our theoretical predictions, especially in view of 
the admittedly approximate experimental esti- 
mates and the fact that exact values for the 
critical LID ratio will vary for starting shapes 
departing from our assumed perfect cylinder 
with hemispherical tips. In general, if the start- 
ing shape is more "pointed" than this, the LID 
estimates would be too large whereas for "blun- 
ter" starting shapes they would be too small 
for the proper comparison with theory. 

An additional point should be kept in mind 
when comparing theory and experiment. The 
numerical technique employed here is capable of 
handling any surface-of-revoltltion shape but only 
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the special shape o f  a perfect cylinder with hemi- 
spherical tips is treated here. A semi-infinite rod 
with a taper was analysed previously [3] where 
it was found that if a critical taper is exceeded 
( ~ 3  ~ ovulation will not  occur at all and, for 
any finite taper ( >  3~ ovulation times increase 
significantly. Thus, if experimental studies involve 
tapered rods, these phenomena must be appro- 
priately factored in when comparing with theory. 

Finally, we note that the concept of  the spher- 
oidization of  cylinders has recently been em- 
ployed to explain the mechanism of  crack healing 
in ceramic crystals at high temperatures. For ex- 
ample, Yen and Coble [13] report for A12Oa 
that cracks, on annealing, broke up first into 
channels o f  cylindrical voids and ultimately 
into rows of  spherical pores. They found the 
break-up of  long cylindrical voids to conform to 
the Nichols-Mullins theory for surface diffusion 
but did not  address the question of  critical LID 

ratios. These studies, however, offer direct ex- 
perimental support for the mechanism of  platelet 
break-up proposed by Nichols and Mullins [2],  
i.e. p la te le t~  cylinders (on the platelet edges) 
-~ spheres (by ovulation from cylinders). 

4. Conclusions 
The evolution in shape of  finite, initially cylin- 
drical rods due to capillarity-induced surface 
diffusion has been developed by a numerical 
solution of  the controlling differential equation. 

A critical length-to-diameter ratio (L/D) of 7.2 
is predicted, below which a rod will form one 
spheroid and above which it will form two or 
more. This predicted critical LID value was shown 
to have experimental support from several studies. 
Also, experimental evidence was discussed for the 
validity of  the previously proposed mechanism 
for the break-up of  platelets into cylinders and 
finally into spheres. 
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